Computing paths over the network

Computing paths over the network#

In this example we show how to use the Polaris Batch Router to compute paths over the network

Imports#

from pathlib import Path

import folium
import numpy as np
from polaris import Polaris
from polaris.utils.database.db_utils import read_and_close

sphinx_gallery_thumbnail_path = "../../examples/working_with_models/routed_path.png"

Data Sources#

Open the demand database for analysis

model_fldr = "/tmp/Grid"
# model_fldr = r"D:\src\argonne\MODELS\Grid"

project = Polaris.from_dir(Path(model_fldr))

router = project.router
/builds/polaris/code/polarislib/polaris/runs/router/batch_router.py:33: UserWarning: Loading scenario into the router. This may take some time
  warnings.warn("Loading scenario into the router. This may take some time")

We can first compute the path between two links The departure is in seconds, and we need to provide both the links and their directions (0 for AB and 1 for BA) If we don’t provide the link directions, they default to 0

path = router.route_links(link_origin=678, link_destination=656, origin_dir=1, destination_dir=0, departure_time=72000)

# Then we can see the total travel time
print(path.travel_time)

# Then we can see the list of links we traversed
print(path.links)

# And the direction we traversed them through
print(path.link_directions)

# And the cumulative travel time at each link
print(path.cumulative_time)
1686.0
[678 677 426 425 127 498 497 496 495 494  35  36  38 297 298 299 300 301
 302 303 304 305  59  57 356 357 358 625 626 627 628 629 630 640 641 642
 643 655 656]
[1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0]
[  52.  104.  160.  216.  265.  330.  395.  440.  485.  530.  568.  597.
  626.  659.  692.  725.  758.  791.  824.  857.  890.  923.  984. 1000.
 1045. 1090. 1135. 1177. 1219. 1261. 1301. 1341. 1381. 1444. 1507. 1570.
 1633. 1686. 1739.]

We can also compute the path between two locations In this case, the link and direction associated with the locations will be used as Origin and destination If we don’t provide a departure time, 8AM (28800) is used

new_path = router.route(90, 740)

We can compute the multi-modal travel time between two locations. We do need to input the mode, however

multimodal_path = router.multimodal(90, 740, 1)
print(f"Multimodal travel time: {multimodal_path.travel_time}")
print(f"Car travel time: {new_path.travel_time}")
Multimodal travel time: 1632.0
Car travel time: 1632.0

And we can plot this path on the network

data = project.network.data_tables
with read_and_close(project.supply_file, spatial=True) as conn:
    links_layer = data.plotting_layer("Link", conn)
    loc_layer = data.plotting_layer("Location", conn)

# We create a Folium layer
network_links = folium.FeatureGroup("links")
computed_path = folium.FeatureGroup("path")
locations = folium.FeatureGroup("Locations")

# We do some Python magic to transform this dataset into the format required by Folium
# We are only getting link_id and link_type into the map, but we could get other pieces of info as well
for link_id, row in links_layer.iterrows():
    points = row.geo.replace("LINESTRING", "").replace("(", "").replace(")", "").split(", ")
    points = "[[" + "],[".join([p.replace(" ", ", ") for p in points]) + "]]"
    # We need to take from x/y to lat/long
    points = [[x[1], x[0]] for x in eval(points)]

    line = folium.vector_layers.PolyLine(points, popup=f"<b>link_id: {link_id}</b>", color="blue", weight=2)
    line.add_to(network_links)
    if link_id in new_path.links:
        line = folium.vector_layers.PolyLine(points, popup=f"<b>link_id: {link_id}</b>", color="red", weight=5)
        line.add_to(computed_path)

for location_id, row in loc_layer[loc_layer.index.isin([90, 740])].iterrows():
    point = eval(row.geo.replace("POINT", "").replace(" ", ","))
    point = (point[1], point[0])
    _ = folium.vector_layers.CircleMarker(
        point,
        popup=f"<b>Location: {location_id}</b>",
        color="black",
        radius=6,
        fill=True,
        fillColor="black",
        fillOpacity=1.0,
    ).add_to(locations)

a, b = network_links.get_bounds()
location = list((np.array(a) + np.array(b)) / 2)

map_osm = folium.Map(location=location, zoom_start=12)
network_links.add_to(map_osm)
computed_path.add_to(map_osm)
locations.add_to(map_osm)
folium.LayerControl().add_to(map_osm)
map_osm
Make this Notebook Trusted to load map: File -> Trust Notebook


Total running time of the script: (0 minutes 0.871 seconds)

Gallery generated by Sphinx-Gallery