Examining Memory

Examining Memory#

In this example we show how to look at the memory_logging.csv output file which can be generated using specially compiled versions of the POLARIS executable. See the memory usage section of the POLARIS system architecture documentation for more details on enabling this feature.

We first load up the csv file and adjust the names for readability.

from pathlib import Path
import pandas as pd

output_dir = Path("data")
df = pd.read_csv(output_dir / "memory_logging.csv")
df["Typename"] = df.Typename.str.replace(".*_Components::Implementations::", "", regex=True)
df["Typename"] = df.Typename.str.replace(
    "_Implementation<MasterType, polaris::TypeList<polaris::NULLTYPE, polaris::NULLTYPE>, void>", ""
)
df["Hour"] = df.Iteration / 3600
df["MBytes"] = df.KBytes / 1024
df
Typeid Typename Iteration KBytes Hour MBytes
0 0 ADAPTS_Activity_Plan 3600 16774.000000 1.0 16.380859
1 1 ADAPTS_Routine_Activity_Plan 3600 2539.250000 1.0 2.479736
2 2 ADAPTS_At_Home_Activity_Plan 3600 12139.200000 1.0 11.854688
3 3 Routing 3600 1297.250000 1.0 1.266846
4 4 Person 3600 9567.220000 1.0 9.342988
... ... ... ... ... ... ...
3054 128 Micromobility_Vehicle 82800 0.000000 23.0 0.000000
3055 129 Traffic_Bus_Vehicle 82800 0.000000 23.0 0.000000
3056 130 EV_Charging_Record 82800 0.000000 23.0 0.000000
3057 131 TNC_Service_Record 82800 0.000000 23.0 0.000000
3058 132 ADAPTS_Charge_Vehicle_Activity_Plan 82800 0.226562 23.0 0.000221

3059 rows × 6 columns



We then find the 10 object types with the highest peak memory use and plot them over the entire simulation period.

import seaborn as sns

# Get the n biggest memory users
n = 10
peak_mem = df.groupby("Typename")["KBytes"].max()
biggest_mem_usage = peak_mem.sort_values(ascending=False)[0:n].index
df_ = df[df.Typename.isin(biggest_mem_usage)]

# Plot them
ax = sns.lineplot(df_, x="Hour", y="MBytes", hue="Typename")
sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1))
plot examining memory usage

This analysis doesn’t tell the whole story though as it doesn’t account for any dynamically allocated memory (i.e. via a vector<float> .resize() or .push_back()). From the summary file we can get a reading of what the operating system thought our total memory footprint was and this can show the same trends but exposes the inability to reliably release memory back to the OS.

When running on Grid - we see about a 345MB delta over and above the 150MB of memory that is tracked via memory_logging.csv and we also see that the memory footprint continues to go up even as the space occupied by allocated objects goes down.

df_ = df.groupby("Hour")[["MBytes"]].sum()

summary = output_dir / "summary.csv"
summary = pd.read_csv(summary)
cols = list(summary.columns) + ["unknown"]
summary = summary.reset_index()
summary.columns = cols
summary["hour"] = (summary.simulated_time / 3600).astype(int)
summary = summary.groupby("hour")[["physical_memory_usage"]].max()

offset = round(summary.physical_memory_usage.iloc[0] - df_.MBytes.iloc[0])
summary["physical_memory_usage"] = summary.physical_memory_usage - offset

ax = sns.lineplot(summary, x="hour", y="physical_memory_usage", label=f"summary.csv + (-{offset})MB")
sns.lineplot(df_, x="Hour", y="MBytes", ax=ax, label="memory_logging.csv")
ax.set_title(f"Memory usage ")
sns.move_legend(ax, "lower left")
Memory usage

Total running time of the script: (0 minutes 0.312 seconds)

Gallery generated by Sphinx-Gallery